
2020

Context-aware In-process Crowdworker Recommendation
上下文感知的过程中的众测人员推荐

Junjie Wang, Ye Yang, Song Wang, Yuanzhe Hu, Dandan Wang, Qing Wang

In Proceedings of the 42st ACM/IEEE International Conference on Software Engineering (ICSE 2020)

联系人：王俊杰王青 联系方式：{junjie, wq}@iscas.ac.cn

• Crowdtesting entrusts tasks to online crowdworkers

whose diverse testing environments, background, and skill

sets could significantly contribute to more reliable, cost-

effective, and efficient testing results.

• Identifying and optimizing open participation is essential.

Motivation

Experiment

Approach

• 85% tasks have 10- or 

longer-sized non-yielding 

window.

• 39% cost is wasted.

• Current workers possibly have similar bug detection

capability with previous workers on the same task.

• Unsuitability of existing one-time worker recommendation.

• The need for in-process crowdworker recommendation by

learning from the dynamic underlying contextual

information to mitigate the non-yielding window.

• 1) Test context modeling:

– Process context: process-oriented information related to

the crowdtesting progress of current task.

– Resource context: availability and capability factors

concerning the competing crowdworker resources.

• 2) Learning-based ranking: extract 26 features

from both process context and resource context, and

learn the workers with the greatest potential to detect

bugs abstracted from historical tasks.

• 3) Diversity-based re-ranking: adjust the ranked list

of recommended workers by optimizing the worker

diversity to reduce duplicate bugs.

• A median of 50% remaining bugs can be detected with

first 10 recommended workers by iRec, 400%

improvement compared with current practice

• With recommended workers, bug arrival curve can rise

quickly

• Reduce an average of 8%-12% cost

Context-aware in-process crowdworker

recommendation approach (iRec) to dynamically

recommend a diverse set of capable crowdworkers

based on various contextual information at a specific

point of crowdtesting process, aiming at shortening the

non-yielding window and improving bug detection

efficiency.

Background

• Long-sized non-yielding

windows (the flat segments),

i.e., no new bugs are

revealed in consecutive test

reports during the process of

a crowdtesting task.


