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Introduction
We propose a method for bounding the probability that a stochastic dif-
ferential equation (SDE) system violates a safety specification over the in-
finite time horizon. SDEs are mathematical models of stochastic processes
that capture how states evolve continuously in time. They are widely used
in numerous applications such as engineered systems (e.g., modeling how
pedestrians move in an intersection), computational finance (e.g., model-
ing stock option prices), and ecological processes (e.g., population change
over time).
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Figure 1. Visual illustration of safety verification problem. A reduction based
approach is presented to bound the unsafe probability w.r.t. a stochastic system.

Previously the safety verification problem has been tackled over finite and
infinite time horizons using a diverse set of approaches. The approach
in this paper attempts to connect the two views by first identifying a fi-
nite time bound, beyond which the probability of a safety violation can
be bounded by a negligibly small number. This is achieved by discover-
ing an exponential barrier certificate that proves exponentially converging
bounds on the probability of safety violations over time. Once the finite
time interval is found, a finite-time verification approach is used to bound
the probability of violation over this interval.
keywords: Stochastic Differential Equations (SDEs), Unbounded safety ver-
ification, Failure probability bound, Barrier certificates.

methodology
Observe that for any 0 ≤ T < ∞,

P (∃t ≥ 0: X̃t ∈ Xu) ≤ P (∃t ∈ [0, T ] : X̃t ∈ Xu) + P (∃t ≥ T : X̃t ∈ Xu)

Our approach consists of three parts:
1. Bounding P (∃t ≥ T : X̃t ∈ Xu) by a exponential decreasing function of T .

2. Bounding P (∃t ∈ [0, T ] : X̃t ∈ Xu) by a time-dependent barrier certificate.

3. Choosing T and summing the above two bound, we can obtain the total
bound.

The generation of a exponential decreasing bound boils down to a semi-definite
programming (SDP) [1]:

minimize
a,α

α

subject to V a(x) ≥ 0 for x ∈ X
AV a(x) ≤ −ΛV a(x) for x ∈ X
ΛV a(x) ≤ 0 for x ∈ ∂X
V a(x) ≥ 1 for x ∈ Xu

V a(x) ≤ α1 for x ∈ X0

Similarly, bounding the finite time unsafe probability reduce to solve the
following SDP:

minimize
b,β

β

subject to Hb(t,x) ≥ 0 for (t,x) ∈ [0, T ]×X
AHb(t,x) ≤ 0 for (t,x) ∈ [0, T ]× (X \ Xu)

∂Hb

∂t
≤ 0 for (t,x) ∈ [0, T ]× ∂X ]

Hb(t,x) ≥ 1 for (t,x) ∈ [0, T ]×Xu

Hb(0,x) ≤ β for x ∈ X0

For different T , solving the corresponding SDP, we can finally obtain the
unsafe probability over infinite time horizon.

Experiments
Example 1 (Population growth) Consider the stochastic system

dXt = b (Xt) dt+ σ (Xt) dWt,

Suppose that the state space is restricted within X = {x | x ≥ 0} with
b(Xt) = −Xt and σ(Xt) =

√
2/2Xt. We instantiate the ∞-safety problem

as X0 = {x | x = 1} and Xu = {x | x ≥ 2}, namely, we expect that the
population does not diverge beyond 2.
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Figure 2. Different choices of T lead to different bounds on the failure probability
(with the time-dependent stochastic barrier certificates of degree 4). Note that
‘◦’ = ‘×’ + ‘△’ and ‘•’ depicts the overall bound on the failure probability
produced by the method in [2, 3].

Example 2 (Harmonic oscillator) Consider a two-dimensional har-
monic oscillator with noisy damping:

dXt =

(
0 ω
−ω −k

)
Xt dt+

(
0 0
0 −σ

)
Xt dWt,

with constants ω = 1, k = 7 and σ = 2. We instantiate the ∞-safety
problem as X = Rn, X0 = {(x1, x2) | −1.2 ≤ x1 ≤ 0.8,−0.6 ≤ x2 ≤ 0.4}
and Xu = {(x1, x2) | |x1| ≥ 2}.
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