CAS 中国科学院软件研究所学术年会'2023 暨计算机科学国家重点实验室开放周

Introduction

Signed distance fields (SDFs) are commonly used in solid modeling and physically based animation. However, how to develop high-performance sparse data structures for signed distance field construction and boolean operations is challenging.

Our motivation is to develop a representation for adaptive signed distance fields that allows fast construction and boolean operations between any two SDFs, named as the algebraic adaptive signed distance field (AASDF).

Methodology

Boolean operation:

The analytic definitions of boolean operations are:

 $\phi_3 = \phi_1 | \phi_2 = min(\phi_1, \phi_2),$ union $\phi_3 = \phi_1 \& \phi_2 = max(\phi_1, \phi_2),$ intersection $\phi_3 = \phi_1 \setminus \phi_2 = \phi_1 \& (-\phi_2),$ difference

Eikonal Equation:

The signed distance field $\phi(x)$ defined on the whole metric space X is: $\phi\left(\mathbf{x}\right) = \begin{cases} d\left(\mathbf{x},\partial\Omega\right) & if \ \mathbf{x} \in \Omega\\ -d\left(\mathbf{x},\partial\Omega\right) & if \ \mathbf{x} \in \mathbf{X} \backslash \Omega \end{cases}$

If the boundary is smooth, the gradient of $\phi(x)$ satisfies the Eikonal equation:

※ 学术论文

 $|\nabla \phi(\boldsymbol{x})| = 1$

Construction Pipeline: Constructing nodes in the finest level. • Boolean operations in the finest level. • Constructing nodes in the intermediate levels. • Constructing nodes in the top-most level.

Applications

Results

Construction

Boolean Operation

AASDFs serve as the boundary for fluid simulation

AASDFs are used to construct complex models and used for fabric simulation

Contribution

Properties of AASDF:

- Adaptivity: The signed distance field maintains a sparse data structure that can dynamically refine the grid resolution to the regions of interest.
- **Completeness:** Boolean operation between any two SDFs produces a new SDF that maintains a sparse data structure fulfilling the adaptivity requirement.
- **Parallelizable:** All steps in the construction of SDFs and boolean operations have a high degree of parallelization. **Contribution:**
- A hierarchical sparse octree that can be used to construct an algebraic system of AASDFs.
- A bottom-up fast iterative method to construct each element of AASDFs in parallel on GPU.
- A bottom-up algorithm to do boolean operations between two AASDFs in parallel on GPU.

*Corresponding authors: Xiaowei He, Enhua Wu. This work was supported by the National Key R&D Program of China (No.2021YFB1715800), the National Natural Science Foundation of China (No.61872345, No.62072449), Youth Innovation Promotion Association, CAS (No.2019109).

~~~~**~**~~~~~~~~~~~