

※ 学术论文

Improving Bit-Blasting for Nonlinear Integer Constraints

Fuqi Jia, Rui Han, Pei Huang, Minghao Liu, Feifei Ma, Jian Zhang 32nd International Symposium on Software Testing and Analysis (ISSTA '23) Contact: Feifei Ma, maff@ios.ac.cn

Introduction

ACM SIGSOFT DISTINGUISHED PAPER

The paper focuses on solving a general form of nonlinear integer arithmetic constraint: (SMT(QF_NIA)). It is the boolean combination (logic operators: Λ, V, \neg) of nonlinear integer arithmetic constraints, involving equations and inequalities. As they often appear in software/hardware verification and analysis, a practical algorithm for the problem is still highly desirable.

Heuristics for obtaining a proper search box Algorithm 1 Greedy Addition (GA)

Multiplication Adaptation: $B_{MA} = \max(\beta - \lceil \alpha m \rceil, L);$ Distinct Graph: $W_{DG}(x) = \lceil \log_2(\deg(x) + 1) \rceil;$ Coefficient Matching: $W_{CM}(x) = \left[\log_2 \frac{\max|c_i|}{|c_x|} \right] + 1;$ Clip: $W(x) = \min(K, \max(W_{DG}(x), W_{CM}(x)));$ Vote: $p(w) = \frac{\#(W(x)=w)}{|\mathcal{V}_{int}|}, x \in \mathcal{V}_{int};$ $B_{VO} = \max(\{w | p(w) > \gamma\} \cup \{0\}).$ Algorithm 1 Greedy Addition (GA)Input : X: a set of bit vectors.Output: \overline{z} : the resulting bit vector.

1: while Size of X > 1 do 2: $\overline{s}, \overline{t} \leftarrow$ the two bit-vectors with smallest bit-widths. 3: remove \overline{s} and \overline{t} from X. 4: $\overline{y} \leftarrow \overline{s} + \overline{t}$ and add \overline{y} into X. 5: end while 6: $\overline{z} \leftarrow X[0]$. 7: return \overline{z} .

Optimal bit-vector addition algorithm (Greedy Addition)

Theorem 1: Given a set of bit vectors X, B(X, GA) is minimal for a successive addition on X. Theorem 2: For a successive addition on X, Algorithm 1 will produce a resulting bit vector z with the smallest bit-width.

Experiments

 We compare other state-of-the-art SMT solvers: APROVE,CVC5, MATHSAT, YICES2 and Z3. The experiments show the advantages both in solving ability and speed.

<<<<**<**<<<<

1200	#U	Total	MathProblems	SAT14	ITS	CInteger	MCM	Leipzig	LassoRanker	Dartagnan	calypto	AProVE	Solvers
1000	8	9515	647	0	6291	667	0	161	9	0	77	1663	APROVE
	0	9343	230	1788	5448	320	13	94	10	7	79	1354	CVC5
o 800	16	12099	193	1770	7553	707	13	128	10	7	79	1639	MATHSAT
¥ 600	9	11040	112	1837	6783	511	10	101	10	6	79	1591	YICES2
	15	13597	659	1852	8397	760	15	159	10	7	80	1658	Z3
400	0	8318	658	244	4878	678	0	161	10	0	59	1630	Z3(B)
200	422	14562	688	1845	9243	837	29	161	10	7	80	1662	BLAN(ours)
200													

