Randomness below complete theories of arithmetic

George Barmpalias－State Key Lab of Computer Science，Inst．of Software，Chinese Acad．Science，Beijing
Wei Wang－Inst．of Logic \＆Cognition and Dept．Philosophy，Sun Yat－Sen University，Guangzhou Information and Computation 290 （2023）－NSFC 11750110425 －barmpalias＠ios．ac．cn

Formal arithmetic（Peano Arithmetic）

Based on Peano＇s axioms and their variations

Language，Coding，Computation
Theories of arithmetic can be written in binary，via coding of formulas into integers．
Then proofs can be viewed as computations．

Complexity of True Arithmetic

The computational complexity of the true sentences of arithmetic is overwhelming：it is as hard as infinitely many iterations of the halting problem．
However many complete extensions of arithmetic，though incomputable，are much easier to compute than many known problems，such as the halting problem．

Randomization in Arithmetic

Completions of arithmetic can be obtained probabilistically
But the probability of a successful outcome is as small as it can be
The same is true for completions of finite segments of arithmetic
Random binaries do not encode complete theories of arithmetic （unless they compute the halting problem）

Complete theories of arithmetic are deep in the sense of Bennett： it is hard to obtain them probabilistically．

Kucera pioneered the study of interactions between randomness and extensions of formal arithmetic

Stephan \＆Levin：weakness of randomization for completing arithmetic and binary predicates

Barmpalias，Lewis－Pye，Ng：complete theories are computable from two random bit－sequences

This is all that was known about computing complete theories of arithmetic with the use of random binaries．．．

Research problem

Given a complete theory of arithmetic and any random binary that it computes，is there another random binary that computes the theory with the help of the first one？

Complete extensions of Arithmetic

There are arithmetical sentences whose validity cannot be decided from the axioms．A complete extension is obtained by adding such sentences（or their negation）to the theory，while maintaining consistency．
Extensions of arithmetic may not be consistent with each other：some may include a certain undecidable sentence， while others may include its negation．

Outcome and Methodology

－Coding deep（Bennett＇s logical depth）information into unstructured（random）binary sequences
\＆Random coding technology was not up to this task
＊Randomizing the method of Kucera，we obtained the required coding method to give a positive answer．

