& TEHSEREFANINES 2\3

A Needle is an Outlier in a Haystack:
Hunting Malicious PyPI Packages with Code Clustering

E TR RRNPyPIR A S ER A ER Nl 5%

GO BAE AL R e 2

The 38th IEEE/ACM International Conference on Automated Software Engineering (ASE2023)
PRRAN: B2CHE, 13146538991, liangwentao@iscas.ac.cn

Background
* The Python Package Index (PyPI), the official third-party software repository for Python, 1s becoming an increasingly

vital resource for developers. Regrettably, the open nature of PyPI exposes end-users to substantial security risks
stemming from malicious packages. Consequently, the timely and effective 1dentification of malware within the vast
number of newly-uploaded PyPI packages has emerged as a pressing concern.

* Existing detection methods are dependent on difficult-to-obtain explicit knowledge, such as taint sources, sinks, and

malicious code patterns, rendering them susceptible to overlooking emergent malicious packages.

Methodology

We 1ntroduce a novel method called MPHunter (Malicious Packages Hunter) based on code clustering to detect malicious
PyPI packages without requiring explicit kownledge. MPHunter is composed of four steps. First, it builds an API encoding

model APIEM for canonical sequence extraction (@). Second, it trains a code embedding model CCEM with the extracted

API sequence (). Third, the installation scripts to be detected are encoded into vectors using CCEM, and then clustered

in the vector space (®). Finally, identified outliers are ranked to highlight the suspects for auditing (@).

- Canonical Seq. Extraction
| BBZ | | BES | 9
4 > : " Canonical DFS/BFS @—>@—>@—>@ Trainine
BB BB4 '-_"HH = j
i + =i T | Traversal g _ > CCEM
Training | ees | A Canonical
scripts CG CFG : APT Sequences
!

I
1
I
1
o—e 00 Traim'ﬂgo !
> —0—0—0 > APTEM !
’ API Sequences !
1
—< = L : i
i T e :
-, 1 '
PyPI : 1 P v v TV

Benign I . LA v & v
Serﬂpﬁ vq“.r 9 - 6 b ¥ ﬁ,
. Canonical -‘—J".'—PH Eﬂlbe'dd C]-“HEHHE @ Ranking @ vy < Manual
S _ — v — .
Seq. Extraction //'/ A v Audit
Canc-mcal . o
Vectors d
API Sequences . [
. y > >
Newly-uploaded Known Malicious sefup.py :
setup.py P
Evaluation Result

Table I: The Recall on Known Malicious Samples

T S B e VR B8 [V I (1 * In total, we successfully discovered 60 malicious packages
Detected | 10 | 10 ]9 |9 |89 |8]10]10] 9 ] 92 in 15 batches (50%) out of the 30. All 60 suspects were

* We also evaluated the recall rate of MPHunter using  confirmed to be truly malicious packages.
known malicious samples. As result, 92 of 100 malicious ¢ All the 60 detected packages have been confirmed as real
samples were ranked in the top ten by MPHunter (recall malware and removed by PyPI.
of 92%). * Note that most of them (53 out of 60, 88%) rank in the top
* We also conduct controlled experiments detecting  three, and 15 even rank first.
malicious packages with only benign set or known ¢ To accurately evaluate the recall of MPHunter, we

malicious set, of which recall decline to 30% and 40% manually analyzed all installation scripts of the 15 batches

respectively. and manual analysis showed that the recall rate of
Table II: The Time Cost of the Offline Stage MPHunter for target batches 1s 100%
Offline Task Preprocessing|Training| Embedding| Sum * Surprlsmgly, The state-of-art malware detection tOOl,
Building APIEM [.409s 320s = [.729s :
Bullding CCEM 5 157% e _ 57305 MalOSS, cannot discover any of these malwares.
Encoding Benign Samples 541s — 1,101s  |1,642s
Encoding Malicious Samples 191s — Sls 242s
Total 7,298s 892s | 1,152s |9,342s
lable 111: 1he 11me Cost of the Unline Stage Conclusion
Batch|#Pkgs [Preprocessing| Embedding|Mergin Clustering Sum
il ; BTEMS & Ranking « We employed MPHunter to detect 30 batches of PyPI
#1 | 4435 1785 3465 1555 25s | 68L5s ,
#3 | 1.278 2185 325 355 55 | 336,55 software packages, totaling 31,329 packages. From 15 of
#6 | 533 25 31s T4s I2s | 88.2s .
#7 | 737 485 625 265 1 3 137 3s these batches, we detected 60 pI'CVlOllSly unknown
#10 | 974 D435 I10s 475 T4s | 40Lds lici =
#13 [1392|  251s [15s 155 T6s | 412.6s LRI DXL s
Eg '1%3;2 3'5%312 ’1&(1)82 1439155 533 15217365;5  The experiments also demonstrate that MPHunter's
#20 | 682 835 J9s 285 Los | 171.5s recall is perfect (100%) for detecting malicious setup.py
#24 | 762 T0Ts 66s 275 T2s | 195.2s
#26 | 907 105s 93s 43s I.5s | 242.5s in the target. For a detection method that does not
#27 | 4%4 61s 37s 10 [3s | 118.3s | s . .
#28 | 389 455 39s 19 [3s [ 1043s require explicit knowledge, this result 1s very
#29 | 305 32s 25s 10s I.0s | 68.0s ,
#30 | 1.177 124s 30s 40s T4s | 245.4s encouraging.
Total [18,615]  2,718s 15645 | 688s | 22.6s |4,992.6s

, , , * Moreover, MPHunter has proven to be scalable,
 The time cost experiment shows that MPHunter 1s a

requiring only a few minutes to complete its analysis for

light-weight tool which can even be deployed on a
most batches. ;

REQULLIREN

<LLLLLLKLLKLLKLKLKLKL



	幻灯片编号 1

