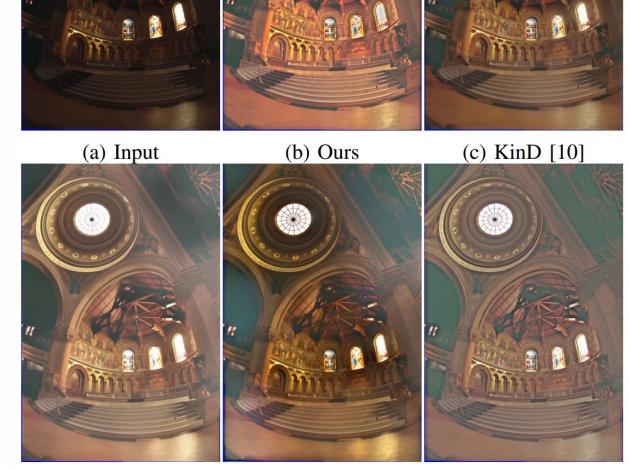
#### **しました。**中国科学院软件研究所学术年会'2023 暨计算机科学国家重点实验室开放周

# 利用 Retinex 分解和混合曲线估计进行零样本自适应 低光增强

Zero-shot Adaptive Low Light Enhancement with Retinex Decomposition and Hybrid Curve Estimation

夏玉萍,徐帆江,郑权 Email: {xiayuping2022, fanjiang, zhengquan} @iscas.ac.cn 联系人:夏玉萍联系电话: 18298239479


### Motivation

□ Due to the suboptimal environment and equipment, the obtained low-light images often have problems such as low brightness, insufficient contrast, and noise, which also affect the performance of high-level vision tasks. Low-light image enhancement can improve the visual quality of images and improve the accuracy of high-level vision tasks.

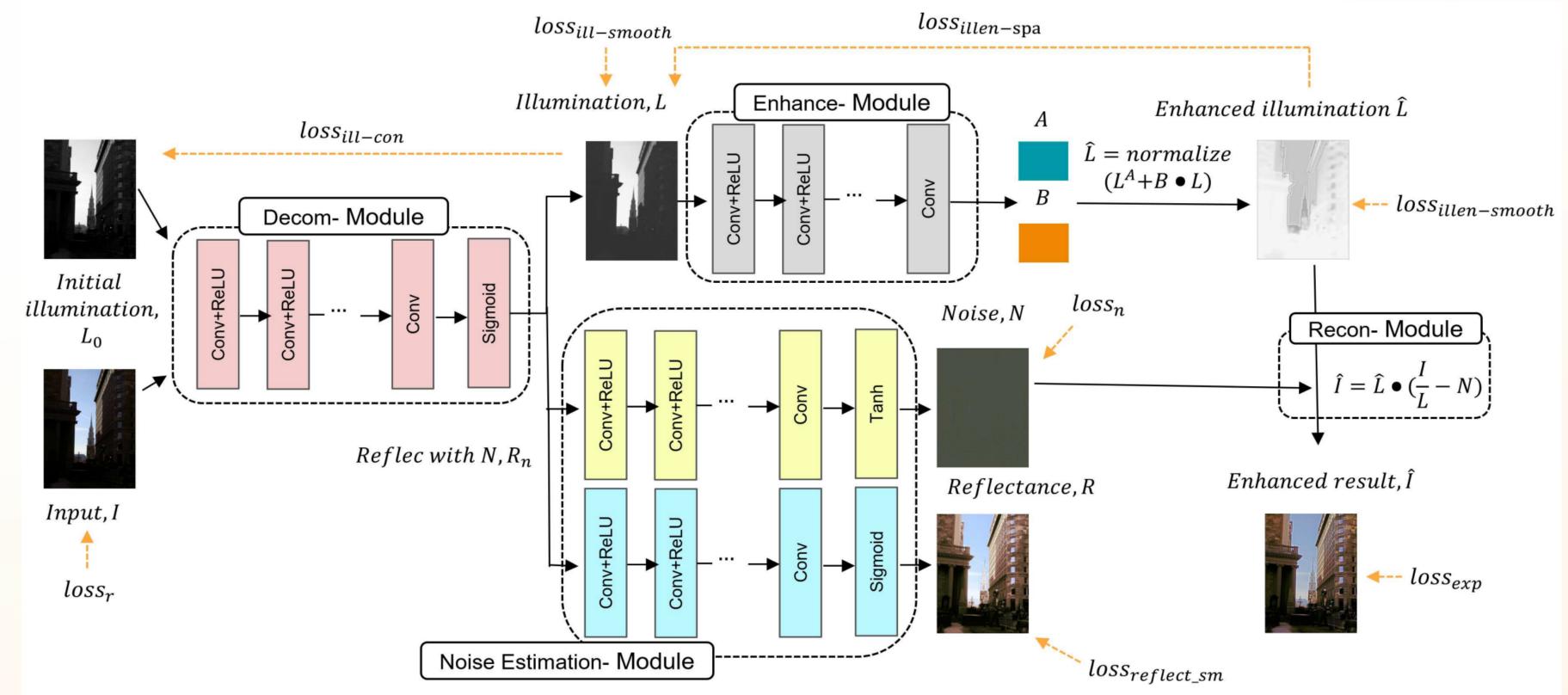


※ 学术论文

However, existing methods often do not consider noise or uneven illumination in low-light images.

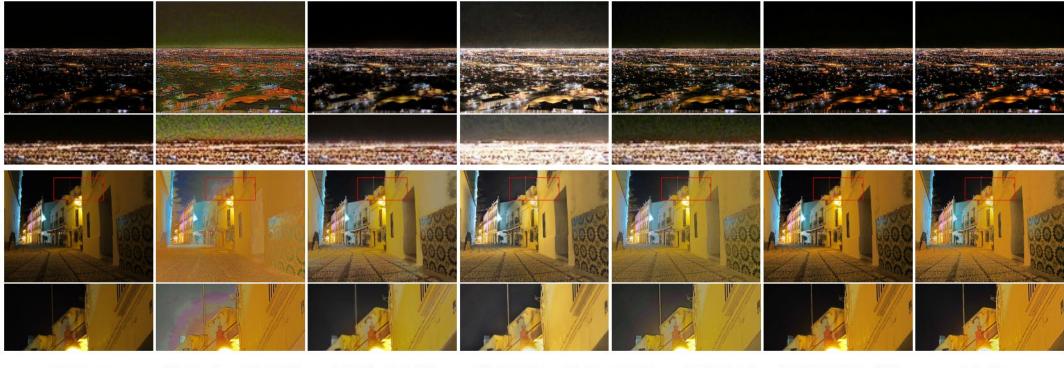


(d) LLFlow [12] (e) EnlightenGAN [14] (f) Zero-DCE [16]


## Method

- Our method mainly consists of four modules: (1) retinex decomposition, (2) noise estimation, (3) illumination enhancement and (4) reconstruction.
- **Retinex decomposition:** This module decomposes the low-light image into illumination and reflectance.
- **Noise estimation:** We estimate the noise in the reflectance component, and then remove it to obtain a clean reflectance component.

**Illumination enhancement:** This module uses the hybrid curve to enhance the


#### illumination.

**Reconstruction:** This module is the product of the denoised reflectance and the enhanced illumination.



#### **Evaluation & Results**

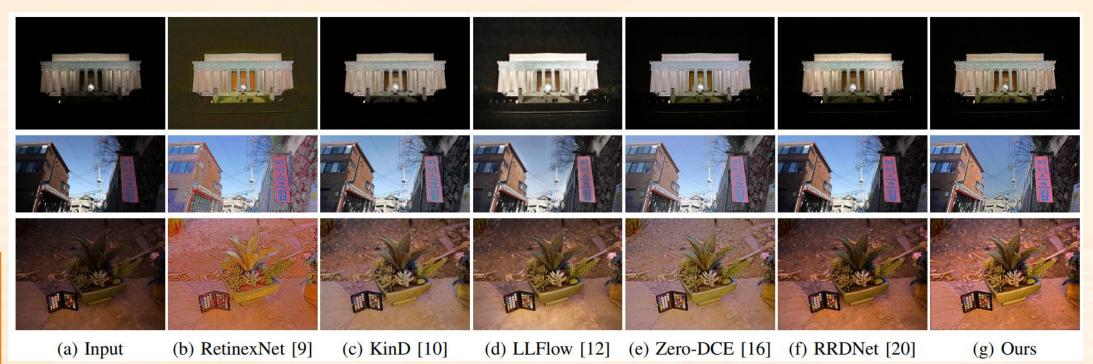
• We conduct ablation experiments to validate



- the illumination adjustment module.
- We perform ablation experiments on the loss functions.
- Extensive experiments demonstrate that the proposed method outperforms state-of-the-art methods qualitatively and quantitatively on the popular public datasets.

Comparison of the effects of different loss functions on NIQE the best result is in bold.

| Settings                          | Average |  |
|-----------------------------------|---------|--|
| w.o. $loss_{ill-con}$             | nan     |  |
| w.o. $loss_{ill-smooth}$          | 4.62    |  |
| w.o. $loss_n$                     | 3.77    |  |
| w.o. $loss_{reflect_sm}$          | 3.61    |  |
| w.o. $loss_r$                     | nan     |  |
| w.o. loss <sub>illen-smooth</sub> | 3.61    |  |
| w.o. $loss_{illen-spa}$           | 3.67    |  |
| w.o. $loss_{exp}$                 | 4.32    |  |
| Ours                              | 3.59    |  |


Comparison of our and other methods on NIQE, the best results are in bold.

| Method         | LIME | DICM | NPE  | MEF  | Average |
|----------------|------|------|------|------|---------|
| RetinexNet [9] | 4.59 | 4.46 | 4.59 | 4.41 | 4.51    |
| KinD [10]      | 4.40 | 4.21 | 4.12 | 4.05 | 4.19    |
| LLFlow [12]    | 4.35 | 4.25 | 4.32 | 4.26 | 4.29    |
| ZeroDCE [16]   | 3.80 | 3.56 | 3.94 | 3.30 | 3.65    |
| RRDNet [20]    | 3.95 | 3.60 | 4.07 | 3.47 | 3.77    |
| Ours           | 3.65 | 3.50 | 3.96 | 3.26 | 3.59    |

(a) Input (b) RetinexNet [9] (c) KinD [10]

(d) LLFlow [12] (e) Zero-DCE [16] (f) RRDNet [20]

(g) Ours



Comparison of different illumination enhancement modules on NIQE, the best results are in bold.

| Settings     | LIME | DICM | NPE  | MEF  | Average |
|--------------|------|------|------|------|---------|
| Only Gamma   | 3.74 | 3.51 | 4.01 | 3.26 | 3.63    |
| Only Liner   | 3.68 | 3.51 | 3.96 | 3.31 | 3.61    |
| S-curve [29] | 3.77 | 3.55 | 3.94 | 3.36 | 3.65    |
| Ours         | 3.65 | 3.50 | 3.96 | 3.26 | 3.59    |