

Context-aware Bug Reproduction for Mobile Apps 上下文感知的移动应用缺陷自动复现技术

Yuchao Huang, Junjie Wang, Zhe Liu, Song Wang, Chunyang Chen, Mingyang Li, Qing Wang In the 45th IEEE/ACM International Conference on Software Engineering (ICSE 23) 联系人: 黄芋超, 王俊杰, 王青 联系方式: {yuchao2019, junjie, wq}@iscas.ac.cn

Background

lacksquare

Motivation

• Challenges of auto bug reproduction

Reproducing mobile app bug reports

- A prerequisite task before fixing bugs.
- Following reproduction steps in reports.
- A tedious and time-consuming task
- An automated tool is highly expected

- Imprecise and incomplete reproducing step
- Name-related information may be missing
- Some reproducing steps may be omitted
- Greedy-based exploration may be confused

Tromplo	Add a new plant	Save it	Open that created plant	Go to the "Photo" tab	
Example		N ▲ □ ↔ "≱ □ 12:41 ✓ Add new plant		 N M □ Plant details 	
To reproduce the bug:		Plant details Plant name New plant	foo@bar.com HelloWorld - Planted 0 days ago / Op	Feed Action Note Photo Plant details Plant name	
1 Add a new plant		Plant strain Lemon haze		Plant strain HelloWorld	
2 Save it		Plant date 6/5/22 12:41 PM Medium		Grow details Plant date	
3 Open that created plant		Soil Medium details Soil, Perlite 50/50 mix		Međium Soil	$\overline{}$
4 Go to the "Photo" tab				Medium details HelloWorld	

pproach

• We propose ScopeDroid, a context-aware bug reproduction approach to reproduces crash from a text description of mobile bug reports.

- Challenge 1 & 2: Addressed by our multi-modal neural matching network Challenge 3 & 4: Addressed by our context-aware path planning
- **II:** Fuzzy reproducing step matching ullet
 - A multi-modal neural network for matching reproducing steps with the GUI events
 - It derives a fuzzy matching matrix between each reproducing steps and each GUI events
 - We propose a heuristic data generation approach to train this network

I: Construct STG & Info extraction

- Constructs an initial State Transition Graph (STG) with DroidBot
- Extracts information from GUI components Textual/Context information, Icon image
- III: Path planning & STG enrichment
 - Planning the path that triggers the bug from a global perspective
 - We design a weighted algorithm to select to select the optimal path
 - Enriching the STG to include more states, update the path planning

Results and Analysis

- RQ 1: Effectiveness & Efficiency
 - ScopeDroid reproduce 65 (63%) crash reports in an average of 68 seconds
- **RQ 2: Matching Accuracy**
 - ScopeDroid's matching module achieves 0.62-0.709 MRR on step-event matching
- RQ 3: Usefulness
 - ScopeDroid achieves a mean score of 4.14 in the user survey
- RQ 4: Robustness
 - ScopeDroid can still achieve a high success rate on the mutate reports

TABLE II: Performance of reproduction success rate

# Dataset	ReCDroid	ReCDroid+Maca	ScopeDroid
ReCDroid's Dataset (33 Reports)	32 (97%)	32 (97%)	30 (91%)
AndroR2 Dataset (22 Reports)	6 (27%)	6 (27%)	11 (50%)
ScopeDroid's Dataset (47 Reports)	9 (19%)	11 (23%)	24 (51%)
# Total (102 Reports)	47 (46%)	49 (48%)	65 (63%)

TABLE IV: Performance of the matching module for each approach

# Match Module	ReCDroid's Dataset				
	Hit@1	Hit@3	Hit@5	Hit@10	MRR
ReCDroid	0.35	0.44	0.52	0.54	0.411
Maca	0.27	0.31	0.35	0.42	0.307
ScopeDroid	0.61	0.77	0.85	0.91	0.709
# Match Module	AndroR2 Dataset				
	Hit@1	Hit@3	Hit@5	Hit@10	MRR
ReCDroid	0.38	0.44	0.55	0.55	0.441
Maca	0.22	0.38	0.44	0.55	0.33
ScopeDroid	0.55	0.83	0.83	0.94	0.682
# Match Module	ScopeDroid's Dataset				
	Hit@1	Hit@3	Hit@5	Hit@10	MRR
ReCDroid	0.29	0.36	0.36	0.36	0.319
Maca	0.17	0.21	0.23	0.36	0.213
ScopeDroid	0.53	0.7	0.74	0.78	0.62