
それ、今中国科学院软件研究所学术年会'2023 暨计算机科学国家重点实验室开放周

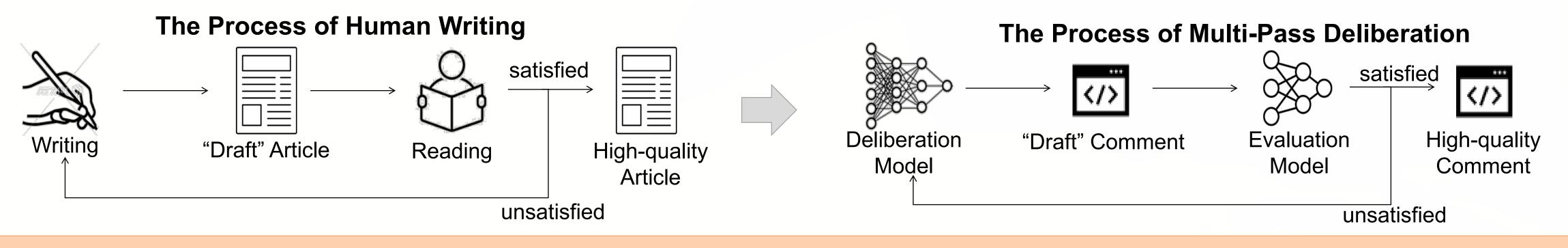
Automatic Comment Generation via Multi-Pass Deliberation 利用多轮改写机制的代码注释生成方法

沐方文, 陈啸, 石琳, 王松, 王青 The 37th IEEE/ACM International Conference on Automated Software Engineering

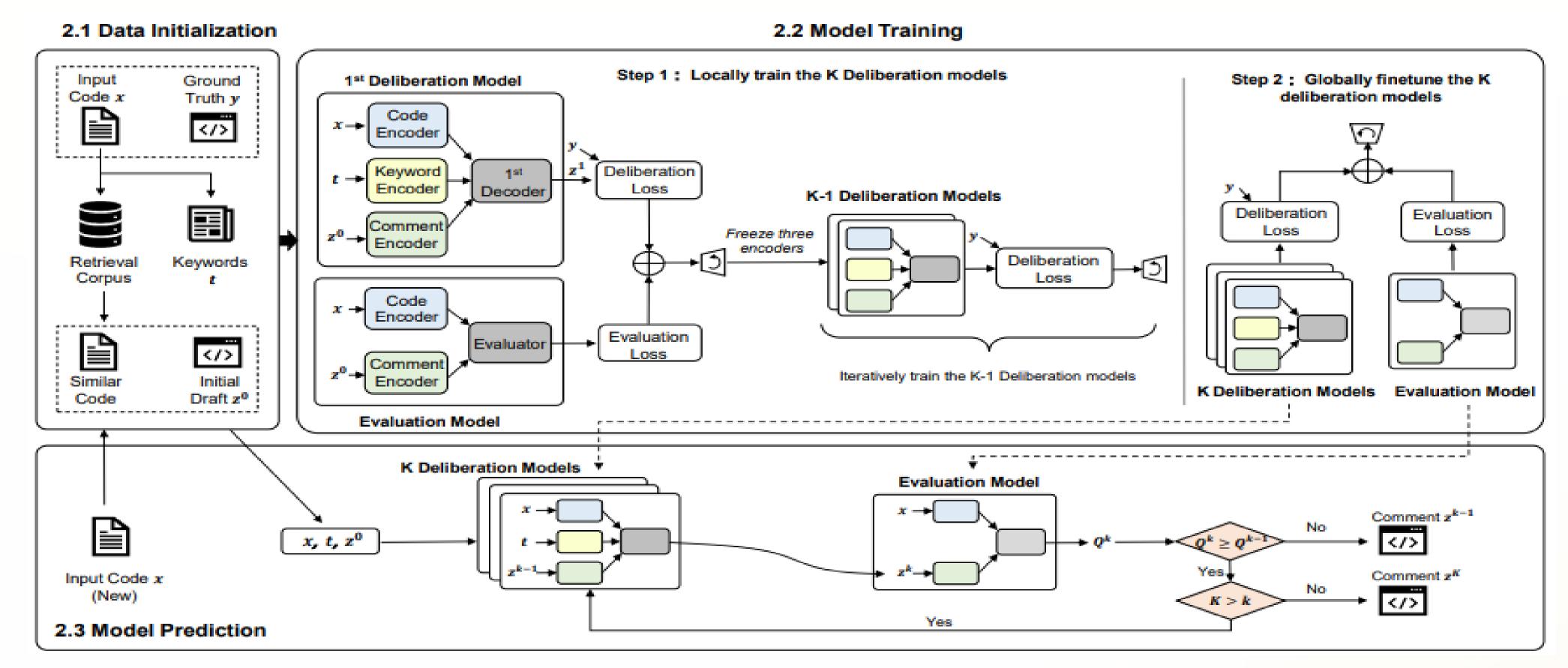
Background

newTable.put(v,table.get(v));

return new CategoricalTable(variable, newTable);


Limitations of the existing approaches:

- > Cannot correct the mispredicted words
- Cannot leverage the global information


学术论文

creates a new copy of the given table of the table

Motivation

Approach: **DECOM**

Three Stages:

>Stage1: Data Initialization, for extracting identifier names from code and retrieving the initial draft. >Stage2: Model Training, for leveraging a two-step training strategy to optimize DECOM. >Stage3: Model prediction, for generating the target comment of the new source code.

Method	JCSD								PCSD								
	BLEU-1/2/3/4				ROUGE-L	METEOR	CIDEr		BLEU-	1/2/3/4		ROUGE-L	METEOR	CIDEr			
LSI	31.4	22.5	19.3	17.3	34.8	14.4	1.803	36.3	23.6	20.1	17.6	40.0	17.2	1.982			
VSM	33.3	24.4	21.1	19.0	36.6	15.4	1.983	38.9	26.1	22.1	19.3	42.7	19.0	2.216			
NNGen	33.0	24.4	20.9	18.7	36.3	15.0	1.933	36.5	23.8	20.1	17.4	40.2	17.1	1.967			
CODE-NN	23.9	12.8	8.6	6.3	28.9	9.1	0.978	30.8	15.4	10.7	8.1	35.1	13.4	1.229			
TL-CodeSum	29.9	21.3	18.1	16.1	33.2	13.7	1.660	31.1	16.5	12.5	10.4	35.3	13.6	1.335			
Hybrid-DRL	32.4	22.6	16.3	13.3	26.5	13.5	1.656	41.1	26.2	19.5	15.0	42.2	17.9	2.042			
Re ² com	33.7	23.6	19.0	16.3	38.1	15.1	1.807	36.6	22.3	17.4	14.5	40.8	17.0	1.813			
Rencos	37.5	27.9	23.4	20.6	42.0	17.3	2.209	43.1	29.5	24.2	20.7	47.5	21.1	2.449			
EditSum	34.1	24.3	19.5	16.9	38.6	15.2	1.865	37.7	23.1	18.2	15.6	42.0	17.1	1.894			
DECOM	40.4	30.2	25.2	22.3	44.5	19.6	2.442	45.6	31.4	25.5	21.9	49.3	22.5	2.603			

Evaluation

RQ1: Comparison with Baselines

 \succ Compared to the best baseline Rencos, DECOM improves the performance of BLEU-4, ROUGE-L, METEOR, and CIDEr by 8.3%, 6.0%, 13.3%, and 10.5% on JCSD dataset, by

5.8%, 3.8%, 6.6%, and 6.3% on PCSD dataset, respectively.

Variants		JCSD								PCSD						
		BLEU-1/2/3/4			ROUGE-L	METEOR	CIDEr	BLEU-1/2/3/4			ROUGE-L	METEOR	CIDEr			
DECOM w/o Multi-pass Deliberation	38.9	28.5	23.5	20.8	43.1	18.8	2.274	43.5	29.3	23.8	20.4	47.5	21.1	2.424		
DECOM w/o Evaluation Model	39.5	29.3	24.3	21.5	43.7	19.0	2.338	44.6	30.3	24.3	20.6	48.6	21.6	2.478		
DECOM	40.4	30.2	25.2	22.3	44.5	19.6	2.442	45.6	31.4	25.5	21.9	49.3	22.5	2.603		

RQ2: Component Analysis

Both the multi-pass deliberation and evaluation model components have positive contributions to the performance of DECOM, where the multi-pass deliberation component contributes more to increasing the performance.

Conclusion

• We propose a multi-pass deliberation framework for comment generation, named DECOM, which is inspired by the human cognitive process, and can effectively generate comments in an iterative way. We conduct an experimental evaluation of the performance of DECOM against SOTA baselines, which shows that **DECOM outperforms all baselines by a large margin** in main evaluation metrics.

O https://github.com/ase-decom/ASE22_DECOM