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 Hand pose estimation is one of the fundamental problems in computer

vision and computer graphics, and has many applications in human-

computer interactions and augmented reality.

Hand pose estimation is challenging due to high degree of freedom.

Visually different hands may have the same pose under proper

alignments.

* Aligning data is an effective way to reduce the viewpoint variations of the
input data. However, previous alignments for hand pose estimation are
restricted in alignment transformation in 2D image plane.

We design a hand pose estimation
model to achieve the full 3D hand

pose, perform both data alignment
and feature extraction in 3D space.

Our main contributions:

* We propose the first pose-guided
data alignment of 3D point clouds
for 3D hand pose estimation.

* We present a new recurrent hand
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‘ “ recurrent pose-aware feature and
f By Wy | S \\\\\ r iteratively refine the estimated
T W | B @ = hand pose.

Cascaded pose-guided 3D alignments
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the previous iteration to align the input point
cloud of the current iteration.
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lllustration of recurrent hand pose network using cascaded pose-guided alignments

Pipeline
global stage palm stage finger stage

f ~mTTTmTmTmETmEEEEEES N f _____________ B f:'.'# S 0 - _. o - N-
/ \ oy tl”:-]l.lafﬂl‘l‘llﬂtd S \ 7 i % blocks like _g \
[ \I I -Pmﬂi.: cloud y 3 P{ :-]l[[_l Siagf S ‘I
| I o=\ 1 ‘
I point o I \ | K i -E —hl. I—* E joints I
I depth cloud jomts [, "r,FT 1 H I I = |
I ................................ Il ! A E l-l r—_—_—f\ 9 |
: Ll e

: | - ; - : i .
| T z e 1 : g Itj.l
I . I 4 joints: | 2 ---_, =
| SEENT 3 Ll |
| i & I : = ]{ (| X2 |
| Iy ~ E—p-f f g — | ;
| e Y e —— 1 __ | |
\ ....................... ! \ I Ly \ ‘E. | I—Ir -E‘ /

transform on original I... o | & y,
\ 4 P |
N e e e e e - ~ “~ powmtcloud _ _ _ _ _ _ _ _ - e e e T T T e e e e e e - -~

lllustration of a cascaded architecture guided by pose-guided 3D alignments
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(b) ICVL Dataset
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(a) NYU Dataset

Qualitative results for NYU, ICVL and MSRA datasets with SoTA methods.
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(c) MSRA Dataset
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(a) NYU

Comparison to SoTA methods on NYU, MSRA, ICVL datasets. We show
mean joint errors for all the test examples.

(b) MSRA (c) ICVL
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Comparison to SoTA methods on NYU, MSRA, ICVL datasets. We show
percentage of frames in the testing examples under different error
thresholds

30
Maximum allow

0 30 40 50 60
aaaaaaaaaaaaa d distance to GT (mm)

(b) MSRA (c) ICVL

+ CLLLLLLRLRLLL

For each recurrent iteration, we design a cascaded
architecture guided by pose-guided 3D alignments.
* Global stage produces a coarse hand pose In
camera coordinate.

Palm stage produces refined palm joints using
aligned 3D point cloud with palm coordinate.
Finger stage produces refined finger joints using
aligned 3D point cloud with finger coordinate.
Final hand pose is composed by the estimated
hand pose from palm stage and finger stage of
the last recurrent iteration.

Z(AB x AQ) [2]

z(AB x A0) [2]

M\HI-:]H = O(Palm)

-II".i_ . : ! '_"'—-—-—___*_ T
i 4’ Y(AO)[1]
B(W st _—

V x[y}czlﬂ

(a) NYU-Palm

(b) NYU-Ring finger

lllustration of the coordinate systems for the pose-guided
alignments. (a)(b) show palm and ring finger coordinate
systems of NYU datasets.
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Qualitative results of different stages on NYU dataset. We
show hand pose estimation results of global stage, palm
stage and finger stage
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