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Motivation

» Background: User behavior sequence modeling plays a significant role in Click-
Through Rate (CTR) prediction. Except for the interacted items, user behaviors contain
rich interaction information, which has not yet been fully exploited.

» Challenge: Given a user behavior and the corresponding situational features (i.e.,
behavior-related side information), how do we generate high-quality embeddings for
these situational features and the behavior, if taking into consideration multiple internal
correlations, including but not limited to the correlations between different situational
features of the same behavior?

DSAIN (Deep Situation-Aware Interaction Network)
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Experlmental Results
» Overall Performance Comparison « DSAIN consistently outperforms
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> Performance of variants with different CFMs
psav' psanni psavd psanvi psani psanv' psani psan © DSAIN achieves the best performance by

priniin i xol A o 4, 2 “  jointly leveraging three mixers, thus
e, L,y w7 % coherently capturing the tri-directional

AUC
Logloss

» Online A/B Test
* [n the Meituan food delivery platform, for seven days beginning on December 6, 2022
 DSAIN increases the CTR by 2.70%, the CPM by 2.62%, and the GMV by 2.16%
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