A Complete Algorithm for Optimization Modulo Nonlinear Real Arithmetic

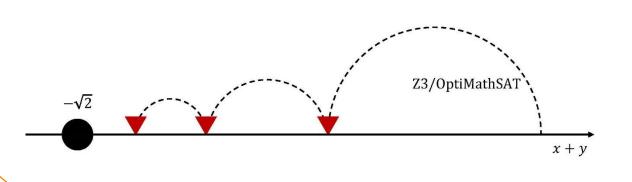
贾富琦,董宇航,韩瑞,黄沛,刘明昊,马菲菲,张健 The 39th Annual AAAI Conference on Artificial Intelligence (AAAI 2025), 39(11), 11255-11263. {jiafq, maff, zj}@ios.ac.cn

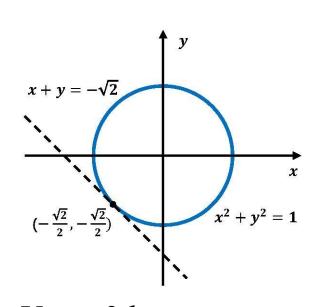
Motivation

Example

Consider an OMT(NRA) formula, $\min x + y$, s. $t. x^2 + y^2 = 1$,

the objective x + y has a minimum value of $-\sqrt{2}$.





Using 2 hours: • *Z3*: *timeout*;

- *OptiMathSAT: timeout.*

Contributions

- Development of the first complete OMT solver for NRA: Present OCAC and CDCL(OCAC), sound and complete algorithms, along with proofs of correctness and termination.
- Investigation of Variants: Explore two additional solving algorithm variants, using CAD and a first-order formulation.
- Evaluation: Integrated this algorithm into CVC5 and conducted empirical evaluations showing that it outperforms the leading OMT solver, OptiMathSAT.

Basic Definitions

Definition 1 (NRA Formula):

(polynomial) $p := x|c|p + p|p \cdot p,$ $\phi := b|p \ge 0|p = 0|\neg \phi|\phi \land \phi|\phi \lor \phi$ (formula) $x \in \mathbb{R}, c \in \mathbb{Q}, b \in \mathbb{B}$

Definition 2 (Cell):

Given $P = \{p_1, \dots, p_m\} \subseteq \mathbb{Q}[x_1, \dots, x_n]$ and $s \in \mathbb{R}^n$, a cell $\mathbb{C}(P, s)$ is a nonempty connected subset of \mathbb{R}^n that is sign-invariant for P and contains s. For all $i \in \{1, \dots, m\}$,

 $\forall s' \in \mathcal{C}(P, s), sign(p_i(s)) = sign(p_i(s')).$

Definition 4 (Extended Domain): Definition 3 (Cell Interval): $\bar{\mathbb{R}} := \mathbb{R} \cup \{\infty\} \cup \{\epsilon\} \text{ and } \epsilon \to 0.$ $\mathbb{C}(\mathsf{P},\mathsf{s})_{\mathsf{x}_i}$ is an interval $\{1,\mathbb{U}\}$ over x_i , i.e., $\forall r \in \mathbb{R}. (1 < r < \mathbb{U} \rightarrow \overline{s} \in \mathbb{C}(P, s)),$

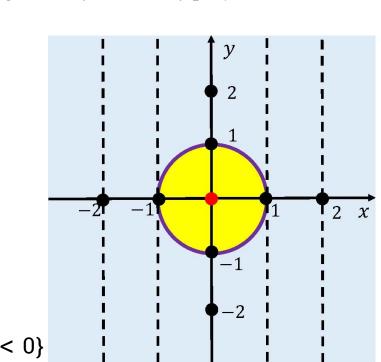
 $w \ h \ e \ r \ e \ \overline{s} := (s^1, \dots, s^{i-1}, r, s^{i+1}, \dots, s^n),$

replacing s_i with r.

A Cylindrical Algebraic Decomposition (CAD) is a decomposition algorithm for a set of polynomials in \mathbb{R}^n , $n \in \mathbb{N}$ space resulting in a finite number of cells.

Consider $\{x^2 + y^2 - 1\}$ and x < y: • Projects y and obtains $\{x^2 - 1\}$;

- Isolates roots, i.e., x = -1 and x = 1;
- Divides \mathbb{R} to 5 segments;
- Samples $x = \{-2, -1, 0, 1, 2\}$, resulting in
- $\{y^2 + 3\}, \{y^2\}, and \{y^2 1\};$ • Isolates roots for $\{y^2 - 1\}$, i.e., $\{-1, 1\}$;
- Divides \mathbb{R} to 5 segments;
- Red point (Rep) appresents then sign in equipment region $\{x^2+y^2-1<0\}$



The Cylindrical Algebraic Covering Algorithm (CAC) is a variant of CAD, adjusted to the context of SMT.

Consider $x^2 + y^2 < 1$ and x < y:

- Assigns x = 1 and obtains $y^2 < 0 \equiv \perp$;
- *Identifies the characterizing set* $\{x^2 1\}$; • Excludes unsatisfiable region $\{-1, 1\} \times \mathbb{R}$;
- Assigns x = 0 and obtains $y^2 < 1$;
- Excludes $\{0\} \times (-\infty, -1] \cup [1, +\infty)$; • Assigns y = 0 and reports T. Finally, it finds a model, i.e., the red point (0, 0).

Generalized Optimization Modulo Theories

Definition 5 (GOMT problem):

A General Optimization Modulo Theories problem is a tuple $99 := (t, <, \phi)$, where, • t, a Σ -term of some sort σ , is an objective term to

- optimize; •< is a strict partial order definable in T, whose defining
 - formula has two free variables, each of sort σ , and
- ϕ is a Σ -formula.

Example is a simple example of $90(x + y, < x^2 + y^2 = 1)$.

For any GOMT problem 90 and T-interpretations 1 and I', we say that:

- •1 is 90–consistent if $1 \models \phi$;
- •1-dominates, 1' denoted by 1 < 901', if 1 and 1' are GO-consistent and $t^1 < t^1$;
- •1 is a 90-solution if 1 is 90-consistent and no T*interpretation* 99-dominates 1.

Definition 6 (GOMT over NRA):

- $A \mathcal{G}\Theta_{NRA}$ is a tuple $\mathcal{G}\Theta_{NRA} := (t, <, \phi)$, where,
- •t is the polynomial objective term to optimize;
- •< is a strict partial order definable in NRA, whose formula defines over $\mathbb{R} \times \mathbb{R}$,
- • ϕ is an SMT(NRA) formula.

Optimization Cylindrical Algebraic Covering

Algorithm 1 OCAC **Input**: $\psi \wedge t = x_t$: The *OMT branch formula*, with *n* variables.

Output: g, v, l: A flag that $\psi \wedge t = x_t$ is satisfiable; The optimum value; The cutting lemma. 1: $\mathbb{I} := \emptyset$, $g := \bot$, $v := \mathsf{None}$ 2: while $\bigcup_{I \in \mathbb{I}} I \neq \mathbb{R}$ do $s_t := \mathsf{Sample_Objective_Value}(\mathbb{I})$ $(T, O) := \mathsf{Solve_Internal}(\psi \land t = x_t \land x_t = s_t)$ if T = T then g := T, $v := Analyze_Cell(O)$ $O:=O\cup[s_t,+\infty)$ $\mathbb{I} := \mathbb{I} \cup \{O\}$ 10: end while 11: **return** (g, v, Lemma(v))

Definition 7 (GOMT in OCAC):

A GO_{OCAC} is a tuple $GO_{OCAC} := (x_t, \prec_{Cell}, \psi)$, where,

• x_t , a variable with $x_t = t$, is the objective variable where polynomial objective term to optimize; t is the

•<_{Cell} is a strict partial order definable in NRA, whose formula defines over $\mathbb{R} \times \mathbb{R}$, and $\mathbf{x}_t^1 \prec_{Cell} \mathbf{x}_t^1$ is equivalent to:

 $\mathbb{I}(\mathbb{C}(\mathbb{P}(\psi), \mathbb{I}_{\mathbb{R}})_{x_t}) < \mathbb{I}(\mathbb{C}(\mathbb{P}(\psi), \mathbb{I}_{\mathbb{R}})_{x_t}),$

• ψ is a conjunction of polynomial atoms.

Correctness and Termination

Theorem (Correctness of CAC):

 x_1, \dots, x_n , $S = \{s_1, \dots, s_m\} \subseteq \mathbb{R}$, $P^1, \dots, P^m \subseteq the set of polynomials in <math>\psi \land t = x_t$. If $\psi \land t = x_t$ is $\mathbb{Q}[x_1, \dots, x_i]$ and $s \in \mathbb{R}^{i-1}$ for $1 < i \le n$. If $\{s\} \times \mathbb{R} \subseteq$ $\bigcup_{j=1}^{m} \mathcal{C}(P_{j},(s,s_{j}^{'})) \ and \ for \ 1 \leq j \leq m, \ \mathcal{C}(P_{j},(s,s_{j}^{'})) \ is \ s = (s_{t},s_{1},\cdots,s_{n}) \ that \ satisfies \ \psi \wedge t = x_{t}, \ then$ unsatisfiable for ψ , then $\mathbb{C}(\operatorname{proj}_{\operatorname{cov}}, (P^1, \dots, P^m, s, S), s)$ is Theorem le Termination of OCAC):

terminates.

Theorem (Satisfiable Interval):

Let ψ be a conjunction of polynomial atoms with Given an OMT branch formula $\psi \wedge t = x_t$, P denotes satisfiable, that is, there exists a complete assignment $\forall \gamma_o \in \mathbb{C}(proj_{dec}^n(P), s)_{x_t}, \psi \land t = \gamma_o \text{ is satisfiable.}$

Theorem (Correctness of OCAC):

Given an OMT branch formula $\psi \wedge t = x_t$, OCAC Given an OMT branch formula $\psi \wedge t = x_t$, if $\psi \wedge t = x_t$ x_t is unsatisfiable, OCAC returns UNSAT; otherwise, OCAC can find the optimum.

Corollary

Given a conjunction of polynomial atoms ψ , let I_o of x_t represent the leftmost satisfiable interval for minimization, which can be characterized by three cases: • $I_o = (-\infty, u) \text{ implies } \min(x_t) = -\infty;$

• $I_o = (I, u) \text{ implies } \min(x_t) = I + \varepsilon;$ • $I_o = [I, I]$ implies $min(x_t) = I$.

Theorem (Termination and Correctness):

For a given instance $GO_{NRA} := (t, <, \phi)$, the CDCL(OCAC) algorithm is guaranteed to terminate and produce correct results.

Experiments

• CAD-Based Variant.

Using CAD to precompute the candidate intervals and select representatives from the leftmost interval until finding the optimal.

• First-Order Formulation. Converting the optimization problem into the

• OptiMathSAT.

search.

first-order formula and solving it.

The leading OMT solver using linear or binary

• Benchmarks:

• Generated from QF NRA benchmarks of SMT-

LIB. • For satisfiable instances:

• Randomly select from declared variables;

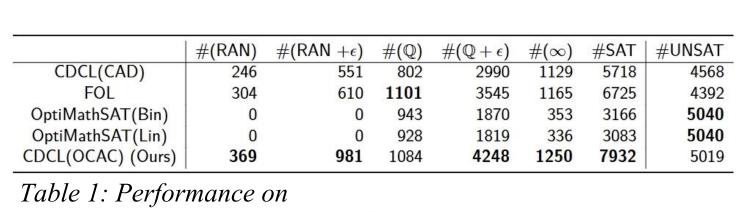
• Add minimization objectives: $x, x + y, x^2 + y^2, xy, or$

xy + z;

• Randomly select 10000 instances. • For unsatisfiable instances, use original

benchmarks, a total of 5532 instances. • *Timeout: 1200 s.*

• For FOL baseline: select the best results from CVC5, dReal, vicesQS, and Z3.



the number of solved instances, including 10000 satisfiable and 5532 unsatisfiable ones.

