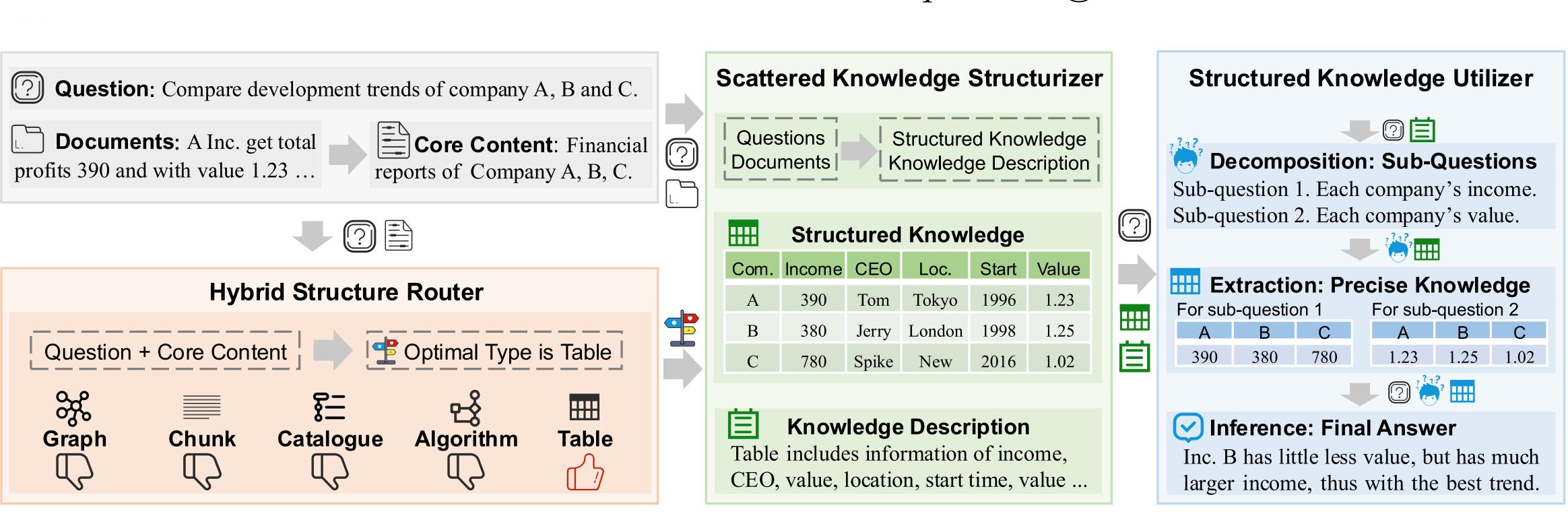
StructRAG: 面向知识密集任务的混合结构化知识增强

StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization

李卓群,陈轩昂,余海洋,林鸿宇,陆垚杰,唐乔裕,黄非,韩先培,孙乐,李永彬

Thirteenth International Conference on Learning Representations (ICLR 2025)

联系人: 李卓群 邮箱: lizhuoqun2021@iscas.ac.cn



1. Background

- ➤ Knowledge-intensive Reasoning
 - > Relevant information is highly dispersed
 - > Deep reasoning based on retrieved information
- > Previous Methods Perform Poorly
 - > Retrieved chunks contain too much noise
 - Failing to identify relationships of information pieces

3. StructRAG Framework

- ➤ Hybrid Structure Router
 - > Determine the optimal structure type
- Scattered Knowledge Structurizer
 - > Transform original information to structured knowledge
- Structured Knowledge Utilizer
 - ➤ Decompose complex questions and do deep reasoning

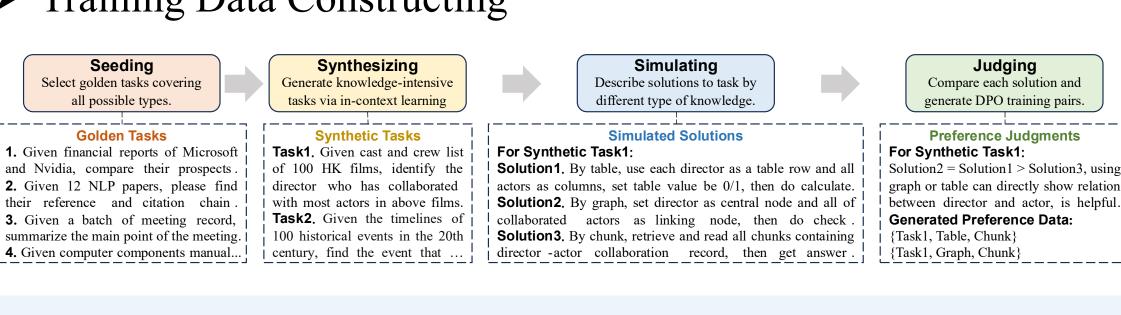
2. Motivation

- ➤ How Do Human Beings Solve Such Tasks?
 - > Cognitive Load: Employ Knowledge structurization
 - > Cognitive Fit: Choosing the optimal type of structure
- ➤ Can LLMs Learn from Human? Yes!
 - > Showing similarities to human cognition, e.g., cot
 - ➤ Having ability for powerful and flexible structurization

4. Router Training

> DPO Training: enhance determining optimal structure type $\mathcal{L}_{\mathrm{DPO}}(\pi_{\theta}; \pi_{\mathrm{ref}}) = -\mathbb{E}_{(q, C, t_w, t_l) \sim D_{\mathrm{synthetic}}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(t_w \mid q, C)}{\pi_{\mathrm{ref}}(t_w \mid q, C)} - \beta \log \frac{\pi_{\theta}(t_l \mid q, C)}{\pi_{\mathrm{ref}}(t_l \mid q, C)} \right) \right]$

> Training Data Constructing



5. Experiments & Conclusion

Method	Spot.		Comp.		Clus.		Chain.		Overall		>
	LLM Score	EM	LLM Score	EM	LLM Score	EM	LLM Score	EM	LLM Score	EM	
			Set 1 (10K-	-50K To	kens)						is.
Long-context (Yang et al., 2024a)	68.49	0.55	60.60	0.37	47.08	0.08	70.39	0.36	60.11	0.29	5
RAG (Lewis et al., 2020)	51.08	0.35	44.53	0.27	37.96	0.05	53.95	0.35	46.11	0.23	
RQ-RAG (Chan et al., 2024)	72.31	0.54	48.16	0.05	47.44	0.07	58.96	0.25	53.51	0.17	
GraphRAG (Edge et al., 2024)	31.67	0.00	27.60	0.00	40.71	0.14	54.29	0.43	40.82	0.18	
StructRAG (Ours)	74.53	0.47	75.58	0.47	65.13	0.23	67.84	0.34	69.43	0.35	_
			Set 2 (50K-	100K T	okens)						
Long-context (Yang et al., 2024a)	64.53	0.43	42.60	0.21	38.52	0.05	51.18	0.20	45.71	0.17	
RAG (Lewis et al., 2020)	66.27	0.46	46.28	0.31	38.95	0.05	46.15	0.22	45.42	0.19	
RQ-RAG (Chan et al., 2024)	57.35	0.35	50.83	0.16	42.85	0.03	47.60	0.10	47.09	0.10	
GraphRAG (Edge et al., 2024)	24.80	0.00	14.29	0.00	37.86	0.00	46.25	0.12	33.06	0.03	
StructRAG (Ours)	68.00	0.41	63.71	0.36	61.40	0.17	54.70	0.19	60.95	0.24	
			Set 3 (100K-	-200K T	Tokens)						
Long-context (Yang et al., 2024a)	46.99	0.27	37.06	0.13	31.50	0.02	35.01	0.07	35.94	0.09	
RAG (Lewis et al., 2020)	73.69	0.55	42.20	0.27	32.78	0.02	37.65	0.13	42.60	0.18	
RQ-RAG (Chan et al., 2024)	50.50	0.13	44.62	0.00	36.98	0.00	36.79	0.07	40.93	0.05	
GraphRAG (Edge et al., 2024)	15.83	0.00	27.40	0.00	42.50	0.00	43.33	0.17	33.28	0.04	
StructRAG (Ours)	68.62	0.44	57.74	0.35	58.27	0.10	49.73	0.13	57.92	0.21	
			Set 4 (200K-	-250K T	Tokens)						
Long-context (Yang et al., 2024a)	33.18	0.16	26.59	0.08	29.84	0.01	25.81	0.04	28.92	0.06	
RAG (Lewis et al., 2020)	52.17	0.24	24.60	0.10	26.78	0.00	17.79	0.00	29.29	0.07	
RQ-RAG (Chan et al., 2024)	29.17	0.08	40.36	0.00	26.92	0.00	34.69	0.00	31.91	0.01	
GraphRAG (Edge et al., 2024)	17.50	0.00	26.67	0.00	20.91	0.00	33.67	0.33	23.47	0.05	
StructRAG (Ours)	56.87	0.19	55.62	0.25	56.59	0.00	35.71	0.05	51.42	0.10	

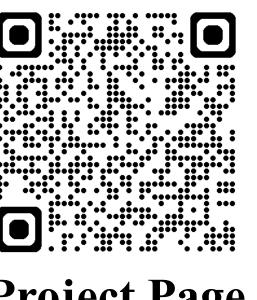
TA performance the Loong chmark

Judging

Compare each solution and

generate DPO training pairs

ore noticeable formance gains complexity reases



roject Page **HuggingFace**)