

Modeling Long-term User Behaviors with Diffusiondriven Multi-interest Network for CTR Prediction

基于扩散模型驱动的多兴趣网络建模用户长期行为 以预测点井率

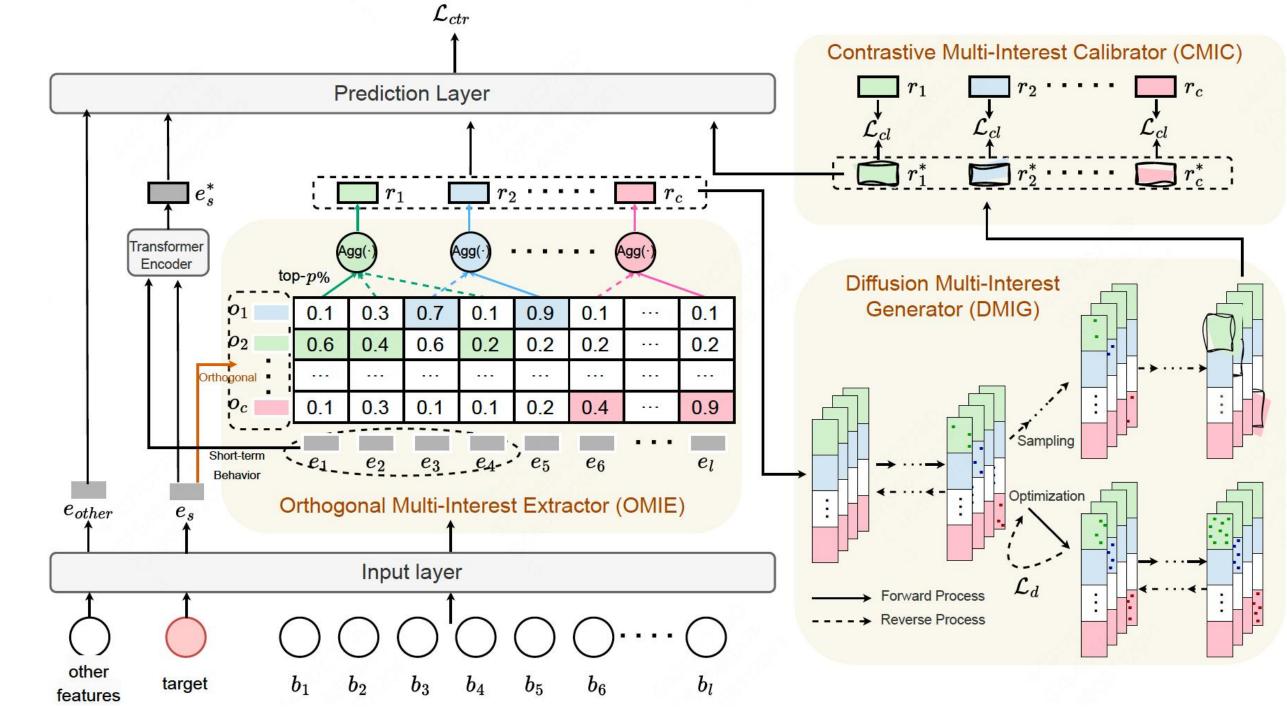
赖伟江, 金蓓弘

19th ACM Conference on Recommender Systems (accepted) Contact: Beihong@iscas.ac.cn

Introduction

- •Click-Through Rate (CTR) prediction is vital for recommender systems and online advertising, with recent research highlighting the importance of modeling long-term user behaviors.
- •Modeling long-term behaviors is challenging due to the vast number of behaviors, noise interference, and computational inefficiency.
- •Existing two-stage models improve efficiency by filtering behaviors but often fail to capture the diversity of user interests, leading to limited latent interest spaces.
- •Inspired by multi-interest and generative modeling, DiffuMIN (Diffusion-driven Multi-Interest Network) is proposed to thoroughly explore and augment the user interest space for better CTR

prediction.



- Orthogonal Multi-Interest Extractor (OMIE):
 - Decomposes the target embedding into multiple orthogonal interest channels.
 - Models the relationship between user behaviors and these channels, disentangling and extracting multiple user interests via behavior routing, channel filtering, and interest aggregation.

Diffusion Multi-Interest Generator (DMIG):

- Introduces a diffusion module guided by contextual interests and interest channels.
- Generates augmented interests that align with the latent user interest spaces, starting from perturbed user interests rather than random noise for better personalization.

•Contrastive Multi-Interest Calibrator (CMIC):

• Employs contrastive learning to align generated augmented interests with genuine user preferences, enhancing the quality and diversity of interest representations.

•Prediction Layer: Aggregated interests, augmented interests, short-term interests,

and other features are combined and fed into an MLP for final CTR prediction.

Dataset	Metric	DIN(S)	CAN(S)	DIN	CAN	SoftSIM	HardSIM	ETA	SDIM	TWIN	TWIN-V2	DiffuMIN
Industry	AUC RelaImpr	0.6740 0.00%	0.6736 -0.23%	0.6751 0.63%	0.6748 0.45%	0.6772 1.84%	0.6780 2.30%	0.6778 2.18%	0.6779 2.24%	0.6785 2.59%	$\frac{0.6788}{2.76\%}$	0.6841 5.80%
Alibaba	AUC RelaImpr	0.6125 0.00%	0.6091 -3.02%	0.6198 6.49%	0.6184 5.24%	0.6212 7.73%	$\frac{0.6239}{10.13\%}$	0.6220 8.44%	0.6206 7.20%	0.6215 8.00%	0.6220 8.44%	0.6282 13.96%
Ele.me	AUC RelaImpr	0.6363 0.00%	0.6378 1.10 %	0.6273 -6.60%	0.6284 -5.80%	0.6399 2.64%	0.6389 1.90%	0.6398 2.57%	0.6404 3.01%	$\frac{0.6410}{3.45\%}$	0.6400 2.71%	0.6462 7.26%

- We conduct extensive offline experiments on three real-world datasets and online A/B testing. Experimental results show that DiffuMIN achieves SOTA performance.
- Interest Channels Target Item Aggregated Interests Augmented Interests Interests from TWIN 200 400 150 100 50 -200 -50-100-400-150-300-200100 200 -150-100100 Case 1 Case 2
- Case studies visualize that DiffuMIN preserves and expands the user interest space more effectively than traditional models.

