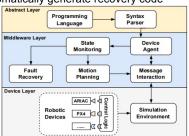
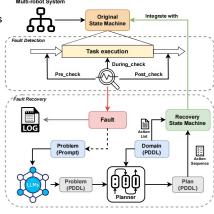
HeRo: A State Machine-based, Fault-tolerant Framework for Heterogeneous Multi-Robot Collaboration

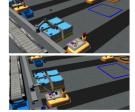
唐瑞杰,吴国全,汪涛,陈伟,魏峻 ICRA 2025

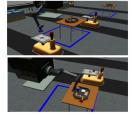

联系方式: 吴国全,13811652932,gqwu@otcaix.iscas.ac.cn

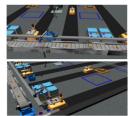

Motivation

- Background: Heterogeneous robots can work together to accomplish a variety of complex tasks and have shown great potential in many fields. The design, implementation, and runtime verification of heterogeneous multi-robot collaboration systems still require further improvement.
- Challenges:
 - > Lack of unified programming abstractions for heterogeneous robots.
 - > Limited reusability and portability of robot control logic.
 - > Unstable communication and untimely response between different robots.
 - > Lack the ability to automatically detect and recover from faults during runtime.

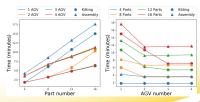
Methodology (HeRo)


- State Machine-Based Programming Language:
 - > Model heterogeneous robots and collaborative tasks in a unified and modular manner
 - > Template-based behavior modeling to improve reusability, consistency, and scalability
- State Synchronization Mechanism:
 - Distributed shared memory
 - > Fixed synchronization cycles to coordinate states
 - > Mutual exclusion and timestamped concurrency
- Fault Detection and Recovery:
 - > Introduce tree types of monitors to detect faults
 - Use Large Language Model (LLM) and PDDL to automatically generate recovery code





Experiments


■ HeRo can effectively model and execute tasks with different difficulty levels in ARIAC (Agile Robotics for Industrial Automation Competition)

- HeRo can identify runtime faults timely and generate corresponding recovery strategies efficiently
 - ➤ Recovery logic generation time ≈ 5% total time
- Performance overhead of the framework is low ≈ 2% CPU and 0.5GB memory
- Scalability: Scaling the number of robots does not increase the time complexity of system execution

