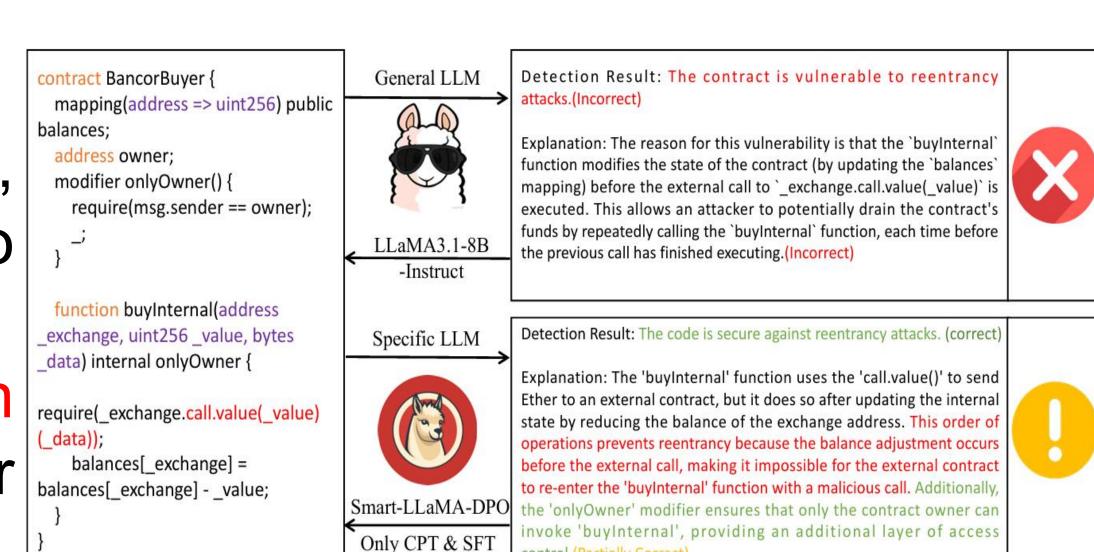
# Smart-LLaMA-DPO: 强化大模型进行可解释智能合约漏洞检测

于磊, 黄智榕, 袁航, 成仕骐, 杨立\*, 张凤军\*, 沈宸杰,

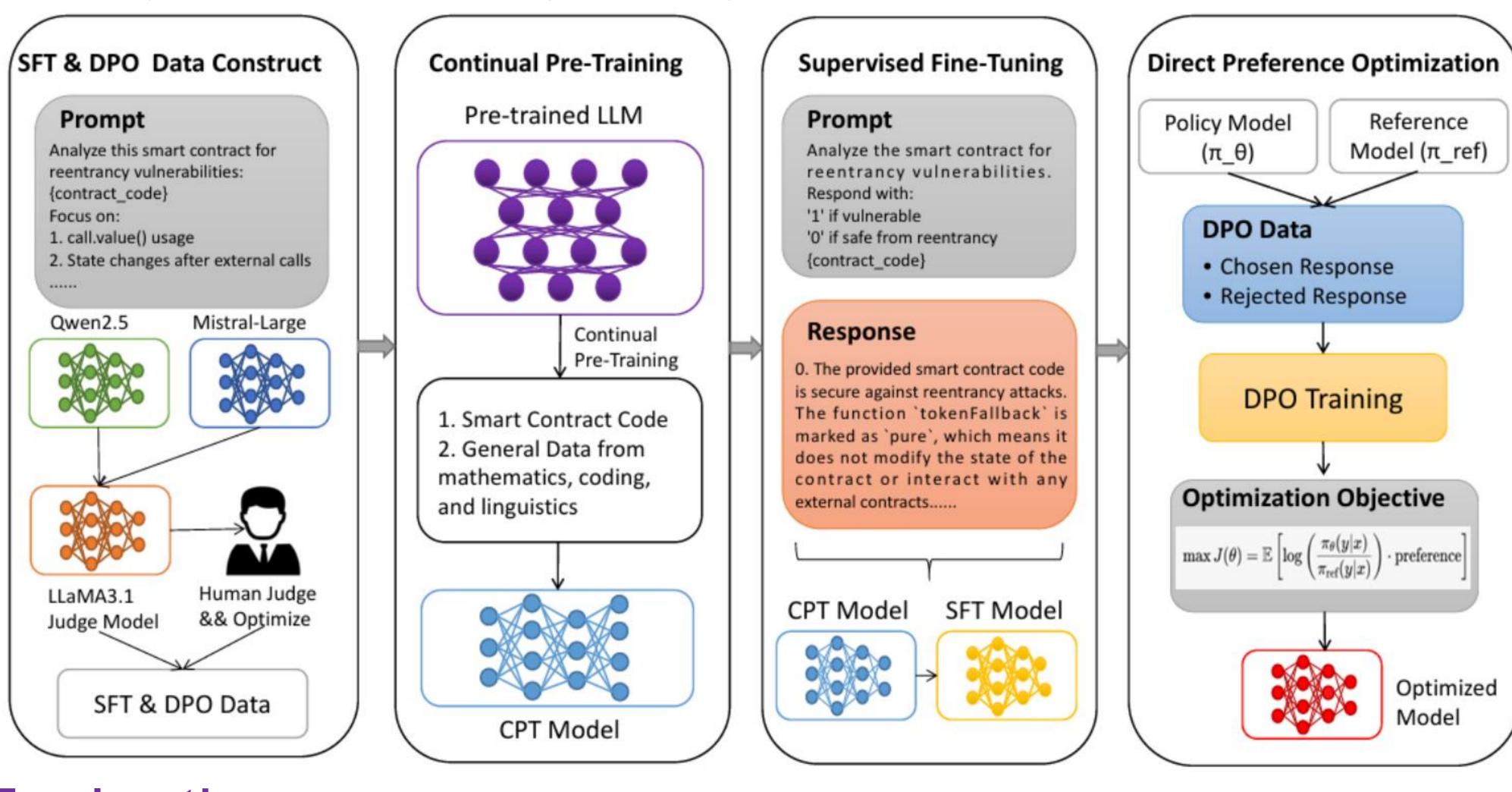
马佳佳,张竞元,陆俊逸,左春

The 34th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2025), 2025


联系人: 于磊、杨立、张凤军

联系方式: {yulei2022,yangli2017,fengjun}@iscas.ac.cn

• Security vulnerabilities in smart contracts (e.g., Reentrancy, Timestamp, Delegatecall, Price Oracle Manipulation) have caused huge financial losses.


### Motivation

- Existing works lack comprehensive, high-quality datasets and struggle to generate accurate explanations.
- LLMs often misinterpret execution order and provide inconsistent or superficial analysis.



# Approach: Smart-LLaMA-DPO

- CPT: Large-scale Solidity contracts, deepens model's domain knowledge.
- SFT: Expert-verified data, labels, detailed explanations, vulnerability locations for 4 main types + 7 machine-unauditable types.
- DPO: Trains on expert-preferred vs. suboptimal explanation pairs, maximizing probability of human-like, high-quality explanations.



## Evaluation

- RQ1&RQ2: Detection Performance
  - Smart-LLaMA-DPO outperforms all baselines on 4 major vulnerability types and 7 machine-unauditable types.
- RQ3: Ablation Study
  - Both Continual Pre-training and Direct Preference Optimization are essential.
- RQ4: Human Evaluation
  - Ours generates more accurate, thorough, and clear explanations than baselines.
- RQ5: Real-World Applicability
  - Case studies show Smart-LLaMA-DPO avoids false positives/negatives and delivers context-aware security advice.

|  | Types | Metric | Base  | Base+CoT | w/o dpo | w/o cpt | w/o dpo & cpt |
|--|-------|--------|-------|----------|---------|---------|---------------|
|  | RE    | Acc(%) | 94.47 | 94.47    | 83.40   | 86.38   | 90.21         |
|  |       | F1(%)  | 88.50 | 88.50    | 73.47   | 77.78   | 79.65         |
|  | TD    | Acc(%) | 95.54 | 93.75    | 80.80   | 82.14   | 69.64         |
|  |       | F1(%)  | 96.43 | 95.30    | 85.32   | 86.39   | 69.64         |
|  | IO    | Acc(%) | 94.65 | 93.42    | 89.71   | 83.95   | 85.19         |
|  |       | F1(%)  | 88.29 | 86.21    | 81.75   | 53.01   | 56.10         |
|  | DE    | Acc(%) | 94.12 | 94.12    | 93.53   | 93.53   | 91.76         |
|  |       | F1(%)  | 84.85 | 84.85    | 83.08   | 83.08   | 78.12         |
|  | MU    | Acc(%) | 90.74 | 91.53    | 78.84   | 86.24   | 72.22         |
|  |       | F1(%)  | 83.41 | 85.19    | 71.22   | 80.60   | 66.88         |

|                  | Correctness |     |     |     | Thoroughness |     |     | Clarity |    |     |     |     |
|------------------|-------------|-----|-----|-----|--------------|-----|-----|---------|----|-----|-----|-----|
|                  | 1           | 2   | 3   | 4   | 1            | 2   | 3   | 4       | 1  | 2   | 3   | 4   |
| LLM Evaluation   |             |     |     |     |              |     |     |         |    |     |     |     |
| LLaMA3.1-8B      | 116         | 201 | 165 | 579 | 42           | 229 | 332 | 458     | 30 | 204 | 578 | 249 |
| FTSmartAudit     | 101         | 234 | 161 | 565 | 53           | 167 | 351 | 490     | 41 | 165 | 454 | 401 |
| iAudit           | 135         | 129 | 84  | 713 | 48           | 216 | 211 | 586     | 27 | 47  | 240 | 747 |
| Ours             | 56          | 86  | 85  | 834 | 9            | 96  | 225 | 731     | 2  | 25  | 469 | 565 |
| Human Evaluation |             |     |     |     |              |     |     |         |    |     |     |     |
| LLaMA3.1-8B      | 76          | 303 | 326 | 356 | 70           | 266 | 457 | 268     | 29 | 212 | 623 | 197 |
| FTSmartAudit     | 127         | 234 | 352 | 348 | 126          | 184 | 523 | 228     | 28 | 165 | 482 | 386 |
| iAudit           | 61          | 255 | 357 | 388 | 48           | 241 | 584 | 188     | 27 | 143 | 418 | 473 |
| Ours             | 19          | 181 | 215 | 646 | 18           | 153 | 346 | 544     | 9  | 48  | 435 | 569 |
|                  |             |     |     |     |              |     |     |         |    |     |     |     |
|                  |             |     |     |     |              |     |     |         |    |     |     |     |