JSCAS 中国科学院软件研究所学术年会'2024 暨重点实验室科技活动周

The Complexity of Symmetric #CSP on Minor-closed Graph Classes 对称#CSP 在图子式封闭图上的复杂性 孟泊宁,潘祎诚

SODA 2025,在投

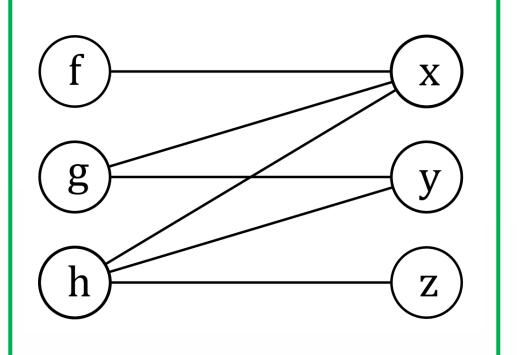
联系方式: 孟泊宁 18810979837 mengbn@ios.ac.cn

Minor: A graph G' is a minor of G if G' can be obtained from G by repeatedly deleting vertices, deleting edges and merging two incident vertices into one.

Minor-closed graph class: For any finite set *H* of graphs, we define the graph class $fb(H) = \{G \mid \text{no graph in } H \text{ is a minor of } G \}$, and H is said to be the forbidden minor set of it.

> **#CSP problem on minor-closed graphs**: Parameterized by a function set F and a forbidden minor set H, denoted as #CSP(F)[H]

An example of the input of #CSP. f, g, h represent signatures while x, y, z represent variables.



#CSP(*F***)**[*H*]:

Input: A bipartite graph $G = (U, V, E) \in fb(H)$ with |U| = m, |V| = n. Each $u \in U$ is assigned a signature f_u from F and each $v \in V$ represent a variable x_v , and $uv \in E$ if and only if f_u depends on x_v .

Output:

$$Z(I) = \sum_{x_1, \dots, x_n \in \{0, 1\}} \prod_{1 \le i \le m} f_i(x_{i_1}, \dots, x_{i_k})$$

Sym-#CSP(F)[H]:#CSP(F)[H] with each signature in F being symmetric, which means the value of each $f \in F$ only depends on the number of 1's in its input.

One of the most effective ways to characterize graph classes

62

#CSP problem is one of the fundamental framework in counting problems. Many counting problems, such as #SAT, counting graph homomorphisms, can be expressed in the form of #CSP.

Our main regulte on $Sym_{HCSP(F)}$

Our main results on Sym-#USF(r)[n]								
Forbidden minor	<i>K</i> 4	K_5	<i>K</i> ₆	<i>K</i> ₇	<i>K</i> ₈			
If $F \subseteq \mathcal{A}$ or $F \subseteq \mathcal{P}$	P-time [Cai, Lu, Xia 2014]							
Else if $F \subseteq \mathcal{M}$ -trans	P-time(1)	P-time(2)	#P-hard(3); P-time(4) #P-hard(5)					
Else		#P-hard [Guo, Williams 2020]						
A summary of our results, which is labelled in red and numbered by (1)-(5). Each row denotes a certain case of F , where `` \mathscr{R} ', `` \mathscr{P} ' and `` \mathscr{M} -trans'' are the only three tractable cases in #CSP on planar graphs. Each column denotes the graph that H contains, where K_n denote the complete graph with n vertices. The symbol ``P-time'' denotes the corresponding problem is polynomial time computable, while `` $\#$ P-hard '' denotes the corresponding problem is $\#$ P-hard. In particular, `` $\#$ P-hard, P-time'' denotes the corresponding problem is $\#$ P-hard in general, but has a polynomial time algorithm when the degree of each vertex is upper bounded.								

Significance

1.Present a complete characterization of the complexity of sym- $\# CSP(F)[K_n].$ 2. Demonstrate that whether

the degree of each vertex is upper bounded influence the complexity.

3. Develop a systematic approach for analyzing the complexity of sym-#CSP on minor-closed graph classes.

Proof sketch

Proof sketch of (1)					2 Dorform o divido
Condition: G	1.Obtain a tree	on with	2.Obtain balanced	ced	3.Perform a divide and conquer
forbid K ₄ minor	decomposition with width at most 2		vertex separators		algorithm in
					polynomial time

Proof sketch of (2)-(5) Condition: $F \subseteq \mathcal{M}$ -trans

Holographic transformation

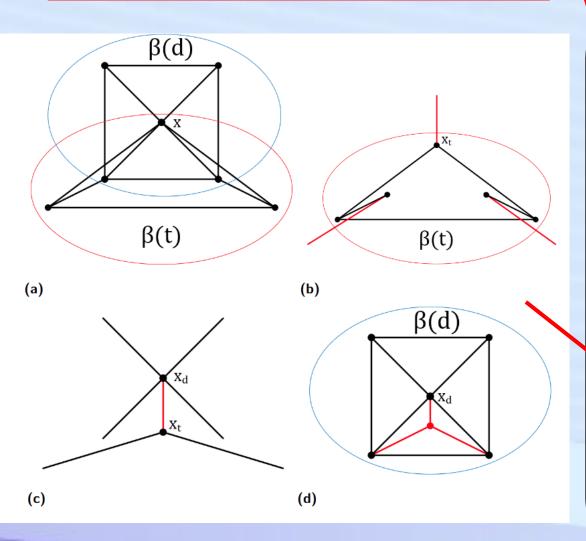
Obtain an equivalent form of Holant($\hat{F}|\hat{EQ}$) of the problem. Here, $\widehat{F} \cup \widehat{EQ} \subseteq \mathcal{M}$, and

there exists $f \in F$ satisfying $f \in \mathcal{M}$ - \mathcal{A} .

Algorithm part

(2) Defined in [Curticapean 2014]

(4) Defined in [Thilikos, Wiederrecht 2014]



Cases: (2)(4)

1.Obtain a specific `tree decomposition; 2.Compute the value of a leaf and record it; 3.Replace the leaf with a single vertex; 4.Doing Step 2,3 successively.

1.Start from a specific #P-hard problem; 2. Reduce the problem to an intermediate problem whose underlying graph forbids the target minor; 3. Simulate signatures in the intermediate problem in a planar way.

Cases: (3)(5)

Hardness part

(3) Counting matchings on planar graphs [Xia, Zhang, Zhao 2007]

(5) Counting perfect matchings on 3-regular graphs [Dagum, Luby 1992]

